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Abstract. The isospin dependence of shell closure phenomena is studied for light neutron-rich nuclei within
a microscopic self-consistent approach using the Gogny force. Introducing configuration mixing, 32Mg is
found to be dynamically deformed, although the N = 20 spherical shell closure persists at the mean-field
level for all N = 20 isotones. In contrast, the N = 28 spherical shell closure is found to disappear for N −Z
≥ 10 whereas deformed shell closures are preserved and lead to shape coexistence in 44S. Configuration
mixing shows that the ground state of this nucleus is triaxially deformed. The first 2+ excitation energy
Ex = 1.46 MeV and the reduced transition probability B(E2; 0+

gs → 2+
1 )= 420 e2 fm4 obtained with our

approach are in good agreement with experimental data.

PACS. 21.60.Ev Collective models – 21.60.Jz Hartree-Fock and random-phase approximations – 21.10.Re
Collective levels and giant resonances – 21.10.Ky Static electromagnetic moments

1 Introduction

The numbers 2, 8, 20, 28,..., which represent the num-
ber of protons or neutrons of closed-shell spherical nu-
clei, have been interpreted with considerable success by
the single-particle shell model [1]. Nowadays, these num-
bers are well reproduced by Hartree-Fock (HF) or Hartree-
Fock-Bogoliubov (HFB) mean-field approaches, in which
the nucleon-nucleon interaction is either taken as a param-
eterized effective force or modeled with meson exchange
in a relativistic formalism. Magic numbers being associ-
ated with a shell closure, i.e. with a large energy gap be-
tween occupied and unoccupied single-particle levels, pair-
ing correlations usually are weak or absent in the ground
state (GS) of magic nuclei.

With the development of several radioactive beam ex-
perimental facilities, a new rich field of nuclear physics
has been opening : the structure of nuclei far away from
the valley of stability. Experimental data on exotic nuclei
are of considerable interest for extending our knowledge of
nuclear structure and for checking the theoretical models
which have so far been used for normal nuclei. One open
question in this context is whether magic numbers are
universal, or whether they change or disappear in exotic
regions, as they do for deformed nuclei.

One of the first investigation in this direction was
the HF calculations performed by Campi et al. with the
Skyrme interaction [2], for neutron-rich Na isotopes. The
semi-magic nucleus 31Na was found deformed, a result
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consistent with the mass measurement of Thibault et al.
[3]. More generally, experimental mass measurements of
N = 20 isotones yield S2n curves that strongly indicate
that the N = 20 magic gap vanishes in exotic nuclei [4–6].
One of the first theoretical study of excited states in 32Mg,
based on an interacting quasi-particle model [7], did not
succeed in reproducing the very low excitation energy (Ex

= 885 keV ) of the first 2+ state [8,9]. Early studies made
by Wildenthal and Chung [10] demonstrated the “col-
lapse” of the conventional shell-model approach in very
neutron-rich Na and Mg isotopes. It was subsequently
shown that neutron-rich isotopes in the vicinity of N = 20
required the inclusion of f7/2 neutron states in the shell
model space of active orbits [11–16]. Results obtained in
32Mg are generally in good agreement with the experi-
mental data, although conclusions concerning the size of
the island of inversion, the role of intruder state or the re-
sulting triaxial instability slightly depend on the detail of
models. It must be noted that pure mean-field approaches
[17–20] — including the present study — obtain too small
a GS deformation in 32Mg for explaining the low 2+ ex-
cited state in this nucleus. Let us mention however that
angular-momentum projection seems to lead to a much
closer agreement with experiment [21].

The Finite Range Droplet Model (FRDM) [22] finds
that 32Mg is a deformed nucleus, but predicts that the
N = 28 44S nucleus is spherical. On the other hand, mea-
surements of the half-life of this latter nucleus [23,24] and
of the B(E2; 0+

gs → 2+) for exciting the lowest 2+ state
[25] strongly indicate that the 44S GS is deformed. Mean-
field approaches predict a nonzero GS deformation [26,
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27] or shape coexistence [28,29], whereas the shell model
calculation of ref. [30] concludes that the N = 28 shell clo-
sure persists. These results, along with those obtained in
this work will be discussed more thoroughly in sect. 3.2.2.

The present paper is devoted to the analysis of the
evolution of nuclear structure in N = 20 and N = 28 iso-
tones, in particular of shell closures, as one goes from the
valley of stability to very neutron-rich nuclei. A prelimi-
nary account of this work has been presented earlier [31].

In a first step HFB calculations are performed for
six nuclei in each of the N = 20 and N = 28 isotonic
chains, using the effective interaction D1S proposed by
Gogny [32,33]. Axial and triaxial nuclear shapes are en-
visaged. Let us mention that several of the studied nu-
clei are close to the neutron drip-line, and therefore the
full HFB method must be used [34]. A configuration mix-
ing technique based on the Generator Coordinate Method
(GCM) with five degrees of freedom (β and γ vibrations
plus rotations) has then been applied to all nuclei in order
to derive the low-lying collective rotational-vibrational ex-
cited states and the associated ground-state correlations.

The mean-field HFB approach and the results obtained
in the N = 20 and N = 28 isotonic chains are presented in
sect. 2. The method employed for configuration mixing is
described in sect. 3. Detailed configuration mixing results
will be shown mainly for 32Mg and 44S, since correlations
beyond the mean-field approximation are essential in these
two nuclei. Conclusions of this work are gathered in sect. 4.

2 The mean-field approach

2.1 The constrained HFB method

In the constrained HFB theory, the deformed states |Ψq〉
of the nuclear system are assumed to be quasiparticle (qp)
vacua (see, e.g., refs. [35] and [33])

|Ψq〉 =
∏

i

ηi |0〉,
ηi |Ψq〉 = 0 , ∀i,

(1)

the quasiparticles ηi being defined via the general Bo-
golyubov transformation. The qp ηi states are deduced
from the minimization of the energy functional

δ〈Ψq|Ĥ − λN N̂ − λZẐ −
∑

i

λiQ̂i|Ψq〉 = 0, (2)

where Ĥ is the many-body nuclear Hamiltonian and the
λ’s are the Lagrange parameters associated with the con-
straints on nucleon numbers and average deformation pa-
rameters (see for example [36])

〈Ψq|N̂ |Ψq〉 = N,

〈Ψq|Ẑ|Ψq〉 = Z,

〈Ψq|Q̂i|Ψq〉 = qi.

(3)

In this work, the Q̂i’s are taken as the quadrupole oper-
ators Q̂20 and Q̂22 that generate β- and γ-deformations,

respectively. Equation (2) leads to the usual HFB equa-
tions, which we solve by iterative diagonalization of the
HFB Hamiltonian

HHFB =
(

e ∆
−∆∗ −e∗

)
, (4)

where

e = h− λNδτ,−1/2 − λZδτ,1/2, (5)

with

hαγ =
(p)2αγ

2M

(
1 − 1

A

)
−

∑
i

λiQi

+
∑
βδ

〈αβ|V |γ̃δ〉ρδβ

+1/2
∑
α′γ′

∑
βδ

〈α′β| ∂V
∂ργα

|γ̃′δ〉ργ′α′ρδβ , (6)

and

∆αβ =
∑
γδ

〈αβ|V |γδ〉κδγ , (7)

are the matrix elements of the mean-field Hamiltonian and
of the pairing field, respectively. The quantities

ραβ = 〈Ψq|c+β cα|Ψq〉,
καβ = 〈Ψq|cα cβ |Ψq〉, (8)

represent the nuclear density matrix and pairing tensor,
respectively.

In our approach, the many-body Hamiltonian Ĥ is as-
sumed to include the term − 〈P̂ 2〉

2AM that corrects the total
energy for the spurious motion of the nucleus center-of-

mass. Here
→
P=

∑
i

→
p i is the nucleus linear momentum

and A = N + Z. This term leads to the one-body correc-
tion −p̂2

2M
1
A in h (eq. (6)), and to a two-body correction∑

i�=j −
→
p i.

→
p j

AM which is assumed to be included in the N-N
interaction V . In the present work, V is taken as the D1S
effective force of Gogny [32], whose parameters are given
in [33,36]. This force is of finite range and therefore can
be used to calculate both the mean-field Hamiltonian h
and the pairing field ∆. This is also a density-dependent
interaction, hence the ∂V /∂ρ term in eq. (6).

A number of studies [37] have shown that the Gogny
force gives a realistic description of nuclear systems in-
cluding the lightest nuclei.

The HFB equations are solved in triaxial symmetry,
by keeping the parity and the z-signature of qp states as
good quantum numbers [35]. The nuclear states |Ψq〉 are
also assumed to be invariant under time-reversal symme-
try K and under the transformation KΠ2, where Π2 is
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Fig. 1. HFB energies in spherical symmetry as functions of
the harmonic oscillator parameter �ω for bases with 9 to 19
major shells in 44S.

the reflection with respect to the xOz plane. As a con-
sequence, all matrix elements in the harmonic oscillator
bases described below are real.

As in ref. [35], the qp states are expanded on triaxial
harmonic oscillator bases. We have chosen bases including
11 major shells, which has been checked to be the smallest
size providing a correct treatment of neutron-rich nuclei
between A = 30 and A = 54. As an example, fig. 1 shows
the HFB energy in spherical symmetry as a function of the
the oscillator parameter �ω for different numbers (N0) of
major shells in 44S. One observes that N0 = 19 can be
considered as a an excellent approximation — within 200
keV — of an infinite basis. With the N0 = 11 basis cho-
sen here, the overestimation of the HFB energy is smaller
than 1 MeV. In order to properly interpret shell closure
phenomena, it is important to check that individual levels,
particularly the relative location of the first empty level
with respect to the Fermi level (i.e. the HF gap) are stabi-
lized with respect to the basis parameters �ω and N0. We
show in fig. 2 the neutron HF gap in 44S as a function of
N0. The �ω parameters have been chosen in order to min-
imize the HFB energy for each value of N0. Their values
are �ω = 9, 12, 15, 16, 15, 16 MeV for N0 = 9, 11, 13, 15,
17, 19, respectively. All HF gap values are within ±200
keV (except for N0 = 9), and converge to 4 MeV. In the
case of the N0 = 11 basis adopted in present calculations,
the relative error on the HF gap appears to be lower than
2%.

The total HFB energy can be written

E = Tr[
p2

2M

(
1 − 1

A

)
ρ] +

1
2
TrTrV ρρ+

1
2
Tr∆κ. (9)

The last term is the pair correlation energy, which we will
call here pairing energy. Let us emphasize that this pairing
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Fig. 2. Nilsson gap between the d3/2 and f7/2 levels as a func-
tion of the number (N0) of oscillator shells in

44S. For each
N0, the �ω parameter is chosen in order to minimize the HFB
energy.

energy differs from the net gain in binding energy brought
by pairing correlations (see, e.g., ref. [32]).

In the following, it will be convenient to adopt the
Bohr coordinates:

β =
√
π

5

√
(q220 + 3q222)
AR2

and γ = arctan
√

3q22
q20

, (10)

instead of the deformation parameters q20 and q22. The
radius R is given by

R2 =
3
5

(
1.2A1/3

)2

fm2, (11)

a definition slightly different from the one adopted in
ref. [35].

2.2 Results

In order to better discuss our results and to compare them
with those of other works, we will make use of the follow-
ing definition of shell closures. We will consider that a
shell closure occurs when three conditions are met : i) the
nuclear energy is minimum, ii) there is a significant gap
above the Fermi level, and iii) pairing correlations van-
ish. The last condition actually will allow us to give a
quantitative meaning to what we will consider as a “sig-
nificant” single-particle gap. This definition will be em-
ployed for spherical as well as deformed nuclei. As for the
magic numbers, we will associated them only with spher-
ical shell closures. In this sense, the scope of this work is
not restricted to the magic numbers N = 20 and N = 28,
since we intend to look at the more general phenomenon
of shell closures and their change as N − Z evolves.
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Fig. 3. Potential energies curves of the N = 20 isotones, as
functions of the axial deformation parameter β. The minima
of the curves are arbitrarily separated by 2.1 MeV.

2.2.1 The N = 20 shell

In order to study the evolution of the N = 20 shell closure,
constrained HFB calculations have been performed for the
N = 20 even isotones having Z equal to 20,18,16,14,12
and 10. Let us note that 30Ne is the last even-even N =
20 nucleus to be bound before the neutron drip-line is
reached, since 28

8 O20 is unbound [38].
The potential-energy surfaces (PESs) of 40Ca, 38Ar,

36S, 34Si, 32Mg, and 30Ne as functions of the axial defor-
mation parameter β are plotted in fig. 3. One notices that
all the PESs have a minimum at β = 0. In other words,
the GSs of these N = 20 isotones are spherical within the
HFB approximation. This result validates the above first
condition for a spherical shell closure. However, the soft-
ness of the PESs increases with increasing N − Z. The
doubly magic nucleus 40Ca is the most rigid against β-
deformation. 32Mg, the softest of the six nuclei, displays a
shallow secondary minimum (a few keV deep) at β � 0.4.
This result is consistent with those obtained with other

mean-field approaches [17–20]. Let us note that 30Ne is
also found to be quite soft.

In order to check the second condition needed for a
spherical shell closure, we display in fig. 4 the individual
neutron levels around the Fermi sea at β = 0 for the six
isotones.

The single-particle energies are defined as the eigen-
values of the Hamiltonian h, eq. (6). These eigenvalues
have been checked to be practically identical to the di-
agonal values of the Hamiltonian h transformed to the
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HFB canonical basis. This is so because the pairing field
∆ of eq. (7) practically vanishes at sphericity (see below).
Two distinct features emerge from these level sequences.
First, the energy difference between the last occupied
level(d3/2), the Fermi level, and the first empty level (f7/2)
decreases from 7.02 MeV for Ca down to 5.37 MeV for Ne.
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Therefore, the N = 20 spherical shell gap weakens as
N−Z increases. Nevertheless, it remains strong enough to
preserve the magic character of the N = 20 shell. Finally,
the single-particle energies increase with N − Z. In par-
ticular, for 30Ne the f7/2 energy becomes positive (1.96
MeV). This indicates that 30Ne is close to the neutron
drip-line.

In order to check the third condition, i.e. the vanish-
ing of pairing correlations, we show in fig. 5 the neutron
pairing energy of the six nuclei as a function of the ax-
ial deformation parameter β. These curves illustrate the
change in the “structure” of the N = 20 shell closure as a
function of N − Z and deformation. We observe that the
pairing energy of all the isotones vanishes at β = 0 in the
same way as in the N = Z = 20 40Ca nucleus, which can
be considered as a reference in this respect. Therefore, the
N = 20 gap in the single-particle levels is large enough to
be associated with a spherical shell closure.

Additional information can be extracted from these
curves concerning the influence of deformation. As can be
seen, the pairing energy vanishes only in a small range of
deformation around the spherical shape. This behaviour
signs the pure spherical nature of the N = 20 shell closure.
The fact that the pairing energies increase more rapidly
with deformation when the proton-neutron difference in-
creases is correlated with the relative softness of the po-
tential for the most exotic nuclei. One could say that, in
the HFB description, the pairing correlations reduce the

energy loss due to deformation. The prolate pairing max-
imum is roughly identical for all nuclei, while the oblate
one tends to increase with N − Z.

As expected, pairing energies are strongly correlated
with level sequences. As an example, fig. 6 shows the in-
dividual neutron energy levels obtained from the diago-
nalization of h (eq. (6)) and, in the uppermost part, the
neutron pairing energy as functions of β-deformation in
the case of 40Ca and of the most exotic isotone, 30Ne. In
both cases, a significant N = 20 gap exists near β = 0.

The strong decrease of the 40Ca pairing energy for
β > 0.7, can be correlated with a Super Deformed (SD)
Nilsson gap, larger than 3 MeV, occurring between the
3/2− state coming from the f7/2 spherical shell, and the
1/2+ state coming from the d3/2 one. This SD gap can
be associated with the SD shoulder in the PES of 40Ca
(see fig. 3). For 30Ne, this gap does not exist, but an-
other gap 3 MeV wide, appears between the 1/2−(f7/2)
and 3/2+(d3/2) levels. This gap is only 2 MeV wide in
40Ca. Its presence explains the minimum in the pairing
energy at β = 0.55. However, it is not large enough to
cancel out pairing correlations and, therefore, to consti-
tute a (deformed) shell closure in the sense given earlier.
For oblate deformations, the pairing energy minimum at
β = −0.4 increases from 2.5 MeV for 40Ca up to 7 MeV
for 30Ne (see fig. 5). This minimum is associated with a
HF gap between the 7/2− and 5/2− levels from the f7/2

shell, which decreases from 3 MeV in 40Ca to less than 1
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Fig. 7. Proton pairing energies of the studied even N = 20
isotones, as functions of the axial deformation parameter β.

MeV in 30Ne. These remarks show that the neutron level
scheme as a function of deformation, strongly depends on
the N − Z difference.

Thus, the N = 20 spherical shell closure is preserved
within the present mean-field approach, even if the proton
neutron difference tends to weaken the magnitude of this
shell closure.

In fig. 7 the pairing energies for protons are plotted
as functions of β-deformation. As expected, the proton
pairing correlations strongly differ from one element to the
next one. If we leave aside the special case of the double
magic nucleus 40Ca, the proton pairing correlations are
seen to almost vanish in 38Ar for −0.3 < β < −0.2, and
in 36S for 0.3 < β < 0.4. In 34Si, the pairing energy is zero
for β < −0.2.

These variations are consistent with the shoulders ob-
served in the PESs of fig. 3. In fact, the deformation
regions where pairing correlations vanish correspond to
comparatively large HF gaps in the single-particle level
schemes and therefore to an increased binding energy.

In the case of 32Mg, the proton pairing energy begins
to decrease at β = 0.1 and vanishes for prolate shapes with
β > 0.5. This is due to a deformed shell effect occurring at
Z = 12 which is associated with the secondary minimum
of the PES at β � 0.6. This deformed shell effect will be
discussed in more detail below. For 30Ne, the proton shell
effect is present but less pronounced than for 32Mg.

As an example of the relationship between shell effects,
pairing correlations and PES minima, the sum of proton
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Fig. 8. Proton plus neutron pairing energy (Epairing) and
HFB potential (VHFB) in

32Mg as functions of β.

and neutron pairing energies, and the HFB energy of 32Mg
are drawn together in fig. 8, while proton and neutron
single-particle levels are shown in fig. 9.

From these curves, it appears that there is a close cor-
respondence between the PES variations and those of the
pairing energy. While the spherical minima are due to a
neutron shell effect, the prolate ones come from the large
proton HF gap (5 MeV) at β = 0.6 (see fig. 9). There-
fore the variations of the PES depend to a large extent on
shell effects, which in turn strongly affect the magnitude
of pairing correlations.

The N = 20 shell appears strong enough to stabilize
spherical GSs, while proton shell effects act on the de-
formation properties of each nucleus. This is true at the
mean-field level but as we will see next, this statement will
have to be revisited when effects beyond the mean field are
taken into account. Actually, the softness of some of the
potential energy curves indicates that the corresponding
nuclei have to be described using mixings of constrained
HFB states.

2.2.2 The N = 28 shell

In order to analyze the N = 28 shell in the same man-
ner as the N = 20 one, we have performed constrained
HFB calculations for six N = 28 isotones. The three pre-
vious conditions needed to verify the occurrence of a shell
closure will be checked one by one.

Figure 10 shows the PESs as functions of the axial
parameter β for the six studied isotones: 42Si, 44S, 46Ar,
48Ca, 50Ti and 52Cr. 52Cr is on the line of β-stability and
will be considered as a reference nucleus. Unlike for the
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N = 20 shell, only three nuclei (48Ca, 50Ti and 52Cr) dis-
play spherical GSs. 48Ca being doubly magic is the most
rigid of all six nuclei. For 46Ar, the GS corresponds to the
very shallow oblate minimum near β = −0.25. For 42Si,
the PES exhibits an oblate 2 MeV deep GS minimum at
β � −0.3. For 44S, the PES displays two minima: an oblate
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Fig. 11. Energies of spherical neutron individual levels of N =
28 isotones as functions of the number of protons. Empty levels
are drawn with dash lines and occupied levels with solid lines.
Labels indicate the spherical quantum numbers lj. Values near
the arrows give the Nilsson gap in MeV of each element.

one at β = −0.2 and a prolate one at β = 0.3. The β-γ
PES of this nucleus (see fig. 17) shows that these minima
are genuinely axial ones, i.e., they are not connected by
any triaxial valley. The two minima have relatively small
depths : 230 keV for the prolate well and 520 keV for the
oblate one. This is in agreement with the study of Werner
et al. [28,27], in which a shape coexistence has been iden-
tified. This result is also found with the RMF calculation
of ref. [29]. The absence of any spherical HFB minima in
Ar, S, and Si shows that the N = 28 spherical shell clo-
sure is broken, since the first of the above conditions is
not fulfilled.
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Figure 11 shows the individual energy levels at spheric-
ity for all six nuclei. The N = 28 HF gap between the f7/2

and the p3/2 levels decreases with decreasing Z, from 5.44
MeV for 52Cr down to 3.5 MeV for 42Si. The breaking of
the N = 28 shell, which occurs between 46Ar and 48Ca
corresponds to a N = 28 gap that becomes lower than
about 4.5 MeV. This number therefore appears as the
minimum gap value required to preserve the shell closure.
Comparing with the previous N = 20 isotones, let us note
that the most exotic nuclei 30Ne20 and 42Si28 in the two
chains have the same value 1/3 for the asymmetry param-
eter δ = (N − Z)/A. However, the HF gap in the N = 28
isotones are 1.6 to 1.5 MeV less than in the N = 20 nuclei.
Therefore, N = 28 appears more as a sub-shell compared
to the N = 20 shell. This observation explains why the
N = 28 shell closure is more easily broken as N − Z in-
creases.

The neutron pairing energies displayed in fig. 12 as
functions of β allow us to check the third condition men-
tioned above for the occurrence of the N = 28 shell clo-
sure. For 52Cr, the neutron pairing energy indeed vanishes
for β = 0, but also in the whole range −0.4 < β < +0.1,
and at β � 0.4 too. Therefore, the N = 28 shell closure is
not only a magic spherical one but also a deformed one.
Clearly, the variations of the pairing energy of the N = 28
isotones are very different from those of the N = 20 chain.
The most striking feature is the stability of the deformed
shell effects at β � 0.5 and β � −0.3 as N − Z increases.

On the other hand, the neutron pairing energy at
β = 0, which vanishes for Z = 18–24, is 0.4 MeV for
44S and 2.8 MeV for 42Si. Therefore, while the spherical
shell closure disappears for the most exotic N = 28 nu-
clei, strong shell effects exist at large prolate and oblate
deformations. In order to understand the origin of these
deformed shell effects, we display in fig. 13 the neutron
individual levels for 42Si and 52Cr as functions of β. The
prolate shell effect comes from a gap between the 7/2−
(f7/2) level and the 1/2−(p3/2) one, that covers a larger
range of deformation (0.2 < β ≤ 0.8) in 42Si than in 52Cr.
Conversely, the oblate shell effect, which originates from
a gap between the same levels as the spherical one, is
stronger in 42Si than in 52Cr.

In order to get an idea of proton shell effects, we have
drawn in fig. 14 the proton pairing energies of the N = 28
isotones. The curves are almost identical to those obtained
for the N = 20 isotones (see fig. 7). For Cr and Ti, the
proton pairing energy is non-zero in the whole range of de-
formations. Therefore, these elements do not have strong
proton shell effects, which is consistent with the relative
softness of the PESs. In the case of 48Ca, it is important
to note that the Z = 20 spherical shell closure appears
as a strong one. For 46Ar, oblate shapes compete with
spherical ones due to a proton shell effect for β < 0.

The stronger proton shell effects occur for the exotic
44S and 42Si. In 44S, the proton pairing energy vanishes
in the whole range 0.25 < β < 0.45, which explains the
secondary minimum and the softness of the PES for pro-
late deformation. In fact, the proton shell effect occurs
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Fig. 12. Neutron pairing energies of the even N = 28 isotones
with even Z = 14 to 24, as functions of the axial deformation
parameter β.

at deformations for which a large neutron shell effect is
also present. The behaviour of the proton pairing energy
in 42Si confirms that this nucleus may be considered as
a kind of doubly magic nucleus (see above). Pairing cor-
relations vanish for a large range of oblate deformations
(β < −0.2) which explains the oblate GS minimum at
β � −0.3. We observe that the proton pairing energy in
34Si (N = 20) is globally larger than in 42Si (N = 28).
This is an indication of the effect of neutron excess on the
proton level scheme.

To summarize, the spherical N = 28 shell closure is not
preserved for exotic nuclei with N−Z ≥ 10 in the sense of
usual spherical shell closures, because the three conditions
we have proposed are not all verified. On the other hand,
deformed shell closures appear for these nuclei. In par-
ticular, the ground-state of 42Si is found to be deformed,
with large proton and neutron HF gaps and zero pairing.
This result is consistent with the conclusion of Cottle and
Kemper [39] who suggest that 42Si “ behaves in a doubly
magic fashion ”. A similar conclusion is reached by Reta-
mosa et al. [30] from calculated S2n’s. It is important to
note that proton shell effects have a strong influence on
the PESs of neutron-rich nuclei, especially when they are
in combination with a neutron shell effect.
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3 Beyond the mean field

In the previous section, we have shown that, at the mean-
field level, the N = 28 spherical shell closure is sponta-
neously broken for Z ≤ 16, while N = 20 remains a spher-
ical magic number. This latter result appears to contra-
dict experimental data which seems to indicate that the
N = 20 shell closure disappears in neutron rich nuclei,
particularly in 32Mg. However, as we have seen, several
N = 20 PESs show that differently deformed HFB config-
urations have close enough potential energies to be mixed
by the residual interaction. In the present section, we ex-
amine the possible influence of such configuration mixings
on the GS structure of the N = 20 and N = 28 nuclei,
using a “ dynamical ” approach based on the Generator
Coordinate Method (GCM). At the same time, we will ob-
tain the π = + low-lying rotational-vibrational collective
levels, as explained in the next subsection.

3.1 The method

We assume the nuclear states are configuration mixings of
constrained HFB wave functions, in the form given by the
GCM theory [40]:

|Φi〉 =
∫

dq |Ψq〉fi(q). (12)

Here q is a multi-dimensional generator coordinate,
which we take as q = (β, γ, θ1, θ2, θ3), where (β, γ) are
the usual Bohr quadrupole deformation parameters, and
(θ1, θ2, θ3) the three Euler angles.

A variational principle applied to the energy calculated
with eq. (12) shows that the weight function fi(q) is a
solution of the Hill-Wheeler equation [41] :∫

dq′ (H(q, q′) − EiI(q, q′)) fi(q′) = 0, (13)

where H(q, q′) = 〈Ψq|Ĥ|Ψq′〉 and I(q, q′) = Ψq|Ψq′〉 are the
GCM energy and norm kernels, respectively, and Ei the
energy associated with |Φi〉.

Instead of solving eq. (13), we will here use the Gaus-
sian overlap approximation (GOA) [42,43]. With this hy-
pothesis, eq. (13) can be transformed into a new equation:

Ĥcollgi(q) = Egi(q), (14)

where q is the above five degrees of freedom, and gi(q)
the Gauss transform of fi(q). The collective Hamiltonian
Ĥcoll writes:

Ĥcoll =
�

2

2

3∑
k=1

Î2
k

Jk
− �

2

2

∑
m,n=0,2

D− 1
2
∂

∂am
D

1
2Bmn

−1 ∂

∂an

+V (q) +∆V (q). (15)
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Fig. 14. Proton pairing energies for the studied even N = 28
isotones, as functions of the axial deformation parameter β.

with a0 = β cos γ, a2 = β sin γ, V (q) = H(q, q), and
∆V (q) represents a 5-D zero point energy corrections
(ZPE) (see ref. [44]). The kinetic term of the collective
Hamiltonian includes collective inertia of vibrational type
Bmn and the moments of inertia Jk of the rotational part.
In this expression, Îk is the k-component of the total an-

gular momentum
→
I in the intrinsic system, and

D =
(
B00B22 −B2

02

) ∏
k

Jk (16)

is the determinant of the metric in the 5-D quadrupole
collective space.

The eigenstates of Ĥcoll may be expressed in terms of
the coordinates (β, γ) as

|IM〉 =
I∑

K=0

gI
K(β, γ) |IMK〉.

Here, |IMK〉 is a normalized combination of Wigner rota-
tion matrices, where M and K are the projections of the

angular momentum
→
I onto the third axis in the laboratory

and intrinsic frames, respectively. Furthermore, gI
K(β, γ)

is the vibrational collective wave function.
The inertia parameters Bmn are obtained here from

the HFB wave functions using the Inglis approximation
[45]. The rotational moments of inertia Jk have been de-
rived in a self-consistent manner from full cranked HFB
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Fig. 15. Axial (left) and triaxial (right) potential energy sur-
faces of 32Mg. The energy of the quadrupole collective levels is
displayed in the left part. The circles in the β-γ right plot in-
dicate the mean deformation of the first 0+, 2+ and 4+ levels.
Equipotential lines are shown in 1 MeV intervals.

calculations [46]. More precisely, for each deformation, we
minimize 〈H−ωzJz〉 for a very small rotational frequency
ωz, which gives Jz = 〈Jz〉/ωz. Jx and Jy are calculated
using the same method with axis permutations. By solving
eq. (14), a correlated GS is obtained, together with collec-
tive rotational-vibrational excited levels [47,48]. From the
corresponding collective wave functions, we determine the
average values 〈β〉 = 〈IM |β|IM〉 and 〈γ〉 = 〈IM |γ|IM〉
for ground and excited states and transition probabilities.

3.2 Results

In order to give an idea of the effects of configuration
mixing in the description of the nuclear structure of exotic
nuclei, we present results for two nuclei: 32

12Mg20 and 44
16S28.

We have chosen these nuclei for two reasons. First, the
topology of their potential energy surfaces shows that they
are the most likely candidates for shape coexistence or
configuration mixing. Second, recent experimental results
exist for these two very exotic nuclei.

3.2.1 The 32Mg nucleus

As we will show, although the N = 20 closure is preserved
within the mean-field description, taking into account cor-
relations associated with vibration-rotation modes induces
a permanent GS deformation in 32Mg.

Figure 15 shows the PES (with ZPE corrections in-
cluded) of 32Mg. In the right part of the figure, the PES
is shown in the β-γ plane. The average deformations, 〈β〉
and 〈γ〉, and spins of the first collective levels are indicated
by the circles. The cut of the PES along the axial direc-
tions γ = 0◦ and γ = 60◦ is shown in the left part of the
figure together with the excitation energies and average β
deformations (counted as positive) of the collective levels.
From these two figures, one can see that the GS energy is
large enough for the GS wave function to spread over the
two wells of the PES. This can be seen in the upper part
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Fig. 16. Collective wave functions in β-γ plane of the first 0+

and 2+ collective levels of 32Mg.

of fig. 16 which shows the GS collective wave function.
The lower part of the same figure shows that the wave
function of the first 2+ state is well deformed (〈β〉 = 0.45)
and peaked at large prolate deformation β = 0.45.

In agreement with experimental information, we there-
fore find that 32Mg is a deformed N = 20 nucleus. The
first 2+ and 4+ are 98% K = 0, which indicates that
they can be considered as members of a rotational band.
The excitation energy of the first 2+ is very small (1.32
MeV) in comparison with usual closed shell nuclei (∼ 3
MeV). Nevertheless, this energy is still too large com-
pared with the experimental value (0.885 MeV). This
disagreement seems to be due to too small a mean de-
formation of the band head. Let us note that the drift
in the GS band deformation is quite large since 〈β〉 in-
creases from 0.274 for the 0+ level to 0.536 for the 4+

level. It is instructive to compare the theoretical moment
of inertia J(1)

I = (2I − 1)/(EI − EI−2) of the 2+
1 → 0+

gs

and 4+
1 → 2+

1 transitions with the 2+
1 → 0+

gs experimen-
tal one. We find 2.29 and 3.78 �

2 MeV−1 for the 2+ and
4+, respectively, whereas the 2+ experimental value is
3.38 �

2 MeV−1. Clearly, a more deformed (therefore less
bound) GS would give a better agreement with experi-
ment for the 2+ excitation energy. This could possibly
be obtained by taking into account other degrees of free-
dom, as the octupole mode or higher multipole deforma-
tions. Nevertheless, the deformation of collective levels is
strongly correlated to the behaviour of inertia parame-
ters. In our approach, these parameters are obtained in
the Inglis approximation. We think that a more consistent
calculation, especially in the situation where strong shell
effects are present, would probably improve our results,
as indicated by preliminary calculations [49]. A second 0+
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Fig. 17. Same as fig. 15 for 44S.

level is found at 2.35 MeV excitation energy. Note that
in fig. 15, the first and the second minima of the PES are
more pronounced than in fig. 3 because ZPE corrections
are included.

The experimental B(E2; 0+
gs → 2+

1 ) has been measured
by Motobayashi using radioactive beams in RIKEN [50]
and via intermediate energy Coulomb excitation by Prity-
chenko [51]. When feeding corrections are included, a value
of 333 (70) e2 fm4 is obtained, which is well reproduced
in our approach, which gives B(E2; 0+

gs → 2+
1 ) = 333.5

e2 fm4. The fact that our B(E2; 0+
gs → 2+

1 ) is in agreement
with this experimental value is somewhat surprising. Let
us mention that a recent measurement [52] gives a much
larger value B(E2; 0+

gs → 2+
1 )=602 (82) e2 fm4.

A deformed GS for 32Mg is consistent with the results
of Poves and Retamosa [11,14] who stress the role of in-
truder states in the onset of deformation near N = 20 far
from stability. Our results are also consistent with the re-
sults of Otsuka [15] who concludes that 32Mg looks like a
γ-unstable deformed nucleus. As can be seen in fig. 16, the
0+ and 2+ collective wave functions contain large compo-
nents of non-axial configurations.

3.2.2 The 44S nucleus

Figure 17 shows the PES of 44S in the β-γ plane (right
part) and in axial symmetry (left part), with ZPE cor-
rections included. A comparison with fig. 10 shows that
the effect of ZPE corrections is to increase the depth of
both oblate and prolate minima. The energies and β-γ
deformations of the first excited states are indicated as in
fig. 15. As in 32Mg, the GS energy is large enough for the
GS wave function to be a mixing of prolate, oblate and in-
termediate gamma deformations, so the first 0+, 2+, and
4+ states are triaxial with 〈γ〉 � 30◦. In fact, the first 0+

collective wave function represented in fig. 18 shows that
the GS is triaxial with a maximum near β = 0. In the same
figure, one can see that, in contrast to the GS one, the 2+

collective wave function is peaked at a prolate deforma-
tion β � 0.25. Nevertheless, this 2+ state contains large γ
deformation admixtures. Analysis of the K-content of the
2+ collective wave function yields 83 % for K = 0 and 17
% for K = 2.
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Fig. 18. Collective wave functions in β-γ plane of the first 0+

and 2+ collective levels of 44S.

We find the excitation energy of the first 2+ excited
state is 1.46 MeV and the reduced transition probability
we calculate is B(E2; 0+

gs → 2+
1 ) = 420e2 fm4. These re-

sults are in good agreement with the experimental values
obtained by Glasmacher et al. [25] via intermediate energy
Coulomb excitation : B(E2; 0+

gs → 2+
1 )= 314(88)e2 fm4,

and E(2+) = 1.297 (0.018) MeV. The experimental β-
value deduced by these authors (0.258) is quite large com-
pared to our result (0.2). However, this value has been
derived using the prescription of Raman et al. [53], which
deduces β2 from the reduced transition probability. Us-
ing the same prescription we find β2 = 0.268 from our
B(E2; 0+

gs → 2+
1 ). Let us note that GS β deformations

ranging from −0.15 to 0.3 are found in the other theoret-
ical models applied to this nucleus [25,27].

4 Conclusion

The microscopic calculations performed in this work with
the Gogny effective interaction show that both N = 20
and N = 28 shell closures vanish in neutron-rich nuclei.
This conclusion is in agreement with the results of most
other theoretical models, as well as with available experi-
mental observations.

The disappearance of shell closures has been found to
stem from different origins in N = 20 and N = 28 nuclei.
In the former case, N = 20 always is a spherical magic
number of the neutron mean field. The N = 20 energy
gap remains large in all studied nuclei, decreasing from
7 MeV in 40Ca to 5.4 MeV in 30Ne. However, configu-
ration mixing of HFB solutions is found to have a con-
siderable effect on the structure of these nuclei. Including

vibration-rotation coupling yields a deformed GS in 32Mg
and, therefore, results in a breaking of the N = 20 closure
in this nucleus.

In the case of N = 28 nuclei, the spherical neutron
shell closure is already broken at the mean-field level for
N − Z ≥ 10. As a counterpart, deformed shell closures
appear in most nuclei. Configuration mixing also plays
an important role in N = 28 exotic nuclei. The results
obtained for 44S are in remarkable agreement with exper-
iments. They show that the GS and first excited state
wave functions of this nucleus contain large admixtures of
triaxial components.

From this study, it appears that different mechanisms
may exist, leading to the disappearance of shell closures.
As exemplified in 32Mg, analyzing this phenomenon in a
pure mean-field context may not be sufficient to explore
the variety of them. It can be noted in this respect that
a configuration mixing of HFB deformed states represents
an efficient way of taking into account intruder states, as
explicitly done in shell model approaches.

Finally, let us point out that the present study devoted
to light nuclei far from stability might suffer from two ap-
proximations introduced in the configuration mixing cal-
culations : the Gaussian Overlap Approximation, and the
use of Inglis-type vibrational masses. The role played by
collective modes other than the quadrupole modes also
should be examined. Improvements of the present ap-
proach in these directions are left for future work.

We would like to thank J.-P. Delaroche and E. Bauge for their
critical reading of the manuscript and useful suggestions.
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S. Péru et al.: Evolution of the N = 20 and N = 28 shell closures 47

16. E. Caurier, F. Nowacki, A. Poves and J. Retamosa, Phys.
Rev. C 58, 2033 (1998).

17. S.K. Patra and C.R. Praharaj, Phys. Lett. B 273, 13
(1991).

18. Zhongzhou Ren, Z.Y. Zhu, Y.H. Cai and Gongou Xu, Phys.
Lett. B 380, 241 (1996).

19. G.A. Lalazissis, A.R. Farhan and M.M. Sharma, Nucl.
Phys. A 628, 221 (1998).

20. J. Terasaki, H. Flocard, P.H. Heenen and P. Bonche, Nucl.
Phys. A 621, 706 (1997).

21. R. Rodriguez-Guzman, J.L. Egido and L.M. Robledo,
Phys. Lett. B 474, 15 (2000).

22. P. Moller, J. R. Nix, W. D. Myers and W. J. Swiatecki,
At. Data Tables 59, 185 (1995).

23. O. Sorlin et al., Phys. Rev. C 47, 2941 (1993).
24. O. Sorlin et al., Nucl. Phys. A 587, 763 (1995).
25. T. Glasmacher et al., Phys. Lett. B 395, 163 (1997).
26. D. Hirata, K.Sumiyoshi, B. V. Carlson, H. Toki and Tani-

hata, Nucl. Phys. A 609, 131 (1996).
27. T.R. Werner et al., Nucl. Phys. A 597, 327 (1996).
28. T.R. Werner et al., Phys. Lett. B 333, 303 (1994); T.R.

Werner et al., Phys. Lett. B 335, 259 (1994).
29. G.A. Lalazissis et al., Phys. Rev. C 60, 014310 (1999).
30. J. Retamosa, E. Caurier, F. Nowacki and A. Poves, Phys.

Rev. C 55, 1266 (1997).
31. J.-F. Berger et al., Proceeding of the Sixth International

Conference on Nuclei Far From Stability and Ninth Inter-
national Conference on Atomic Masses and Fundamental
Constants, Bernkastel-Kues, Germany, 19-24 July, 1992
edited by R. Neugart and A. Wöhr, IOP Conf. Proc. 132
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